4.6 Article

A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain

期刊

PAIN
卷 137, 期 1, 页码 208-217

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1016/j.pain.2008.02.013

关键词

tarantula; spider toxin; GsMTx4; mechanical pain; neuropathic pain

向作者/读者索取更多资源

Mechanosensitive channels mediate various physiological functions including somatic sensation or pain. One of the peptide toxins isolated from the venom of the Chilean rose tarantula spider (Grammostola spatulata), mechanotoxin 4 (GsMTx4) is known to block stretch-activated cation channels. Since mechanosensitive channels in sensory neurons are thought to be molecular sensors for mechanotransduction, i.e., for touch, pressure, proprioception, and pain, we considered that the venom might block some types of mechanical pain. In order to prepare sufficiently large amounts of GsMTx4 for in vivo nociceptive behavioral tests, we constructed recombinant peptide of GsMTx4. Because the amino-acid sequence of the toxin, but not the nucleotide sequence, is known, we back-translated its amino-acid sequence to nucleotide sequence of yeast codons, constructed a template DNA, subcloned this into a Pichia pastoris expression vector, and purified the recombinant peptide. Intraperitoneal injection of the recombinant GsMTx4 to rats significantly increased the mechanical threshold for paw withdrawal in Randall Sellito test, eliciting significant analgesic responses to inflammation-induced mechanical hyperalgesia. GsMTx4 also reduced mechanical allodynia induced by inflammation and by sciatic nerve injury in Von Frey test. However, the venom was ineffective at changing withdrawal latency in hot plate and tail-flick tests. These results suggest that GsMTx4 selectively alleviates mechanical hyperalgesia, which it presumably achieves by blocking mechanosensitive channels. Because the peptide venom induces analgesia for some forms of mechanical pain, GsMTx4 appears to have potential clinical use as a pain treatment. (C) 2008 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据