4.3 Article

Oxidative stress induction of DJ-1 protein in reactive astrocytes scavenges free radicals and reduces cell injury

期刊

出版社

HINDAWI LTD
DOI: 10.4161/oxim.2.1.7985

关键词

DJ-1; release; astrocytes; focal ischemia; oxidative stress sensor; neuroprotection

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO) in Japan

向作者/读者索取更多资源

Astrocytes, one of the predominant types of glial cells, function as both supportive and metabolic cells for the brain. Under cerebral ischemia/reperfusion-induced oxidative conditions, astrocytes accumulate and activate in the ischemic region. DJ-1 has recently been shown to be a sensor of oxidative stress in living cells. However, the function of astrocytic DJ-1 is still unknown. In the present study, to clarify the effect of astrocytic DJ-1 protein under massive oxidative insult, we used a focal ischemic rat model that had been subjected to middle cerebral artery occlusion (MCAO) and reperfusion. We then investigated changes in the distribution of DJ-1 in astrocytes, DJ-1 release from cultured astrocytes, and the effects of recombinant DJ-1 protein on hydrogen peroxide (H2O2)- induced death in normal and DJ-1-knockdown SH-SY5Y cells and on in vitro scavenging of hydroxyl radicals ((OH)-O-center dot) by electron spin resonance spectrometry. At 24 h after 2-h MCAO and reperfusion, an infarct lesion was markedly observed using magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining. In addition, reactive astrocytes enhanced DJ-1 expression in the penumbral zone of the ischemic core and that DJ-1 protein was extracellularly released from astrocytes by H2O2 in in vitro primary cultures. Although DJ-1-knockdown SH-SY5Y cells were markedly vulnerable to oxidative stress, treatment with glutathione S-transferase-tagged recombinant human DJ-1 protein (GST-DJ-1) significantly inhibited H2O2-induced cell death. In addition, GST-DJ-1 protein directly scavenged (OH)-O-center dot. These results suggest that oxidative stress induces the release of astrocytic DJ-1 protein, which may contribute to astrocyte-mediated neuroprotection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据