4.5 Review

Melatonin and the skeleton

期刊

OSTEOPOROSIS INTERNATIONAL
卷 24, 期 12, 页码 2919-2927

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00198-013-2404-8

关键词

Melatonin; Osteoblast; Osteoclasts; Osteoporosis; Review; Skeleton

向作者/读者索取更多资源

Melatonin may affect bone metabolism through bone anabolic as well as antiresorptive effects. An age-related decrease in peak melatonin levels at nighttime is well documented, which may increase bone resorption and bone loss in the elderly. In vitro, melatonin reduces oxidative stress on bone cells by acting as an antioxidant. Furthermore, melatonin improves bone formation by promoting differentiation of human mesenchymal stem cell (hMSC) into the osteoblastic cell linage. Bone resorption is reduced by increased synthesis of osteoprogeterin (OPG), a decoy receptor that prevents receptor activator of NK-kappa B ligand (RANKL) in binding to its receptor. Moreover, melatonin is believed to reduce the synthesis of RANKL preventing further bone resorption. In ovariectomized as well as nonovariectomized rodents, melatonin has shown beneficial effects on bone as assessed by biochemical bone turnover markers, DXA, and mu CT scans. Furthermore, in pinealectomized animals, bone mineral density (BMD) is significantly decreased compared to controls, supporting the importance of sufficient melatonin levels. In humans, dysfunction of the melatonin signaling pathway may be involved in idiopathic scoliosis, and the increased fracture risk in nighttime workers may be related to changes in the circadian rhythm of melatonin. In the so-far only randomized study on melatonin treatment, no effects were, however, found on bone turnover markers. In conclusion, melatonin may have beneficial effects on the skeleton, but more studies on humans are warranted in order to find out whether supplementation with melatonin at bedtime may preserve bone mass and improve bone biomechanical competence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据