4.6 Article

Cartilage stress-relaxation is affected by both the charge concentration and valence of solution cations

期刊

OSTEOARTHRITIS AND CARTILAGE
卷 17, 期 5, 页码 669-676

出版社

W B SAUNDERS CO LTD
DOI: 10.1016/j.joca.2008.09.011

关键词

Cartilage biomechanics; Flow-independent viscoelasticity; Polymer dynamics; Cartilage mechanics

资金

  1. David Linn Chair
  2. NIH [AR050286]

向作者/读者索取更多资源

Objective: Understanding the mechanical functions of specific cartilage molecules such as aggrecan is important for understanding both healthy cartilage and disease progression. Cartilage is primarily composed of chondrocytes and an extracellular matrix consisting of multiple biopolymers, ions, and water. Aggrecan is one matrix biopolymer which consists of a core protein and multiple anionic glycosaminoglycans. Previous research has demonstrated that the stiffness of extracted aggrecan decreases under increased solution cation concentration, and the purpose of this study was to determine whether changes in solution ion concentration resulted in changes in tissue-level viscoelastic properties. Methods: Middle-zone explants of bovine calf patellofemoral cartilage were harvested and cultured overnight before mechanical testing. Repeated stress-relaxation and cyclical loading tests were performed after equilibration in solutions of 0.15 M and 1 M NaCl and 0.075 M and 0.5 M CaCl(2). A stretched exponential model was fit to the stress-relaxation data. Storage and loss moduli were determined from the cyclical loading data. Results: Changes in ionic strength and species affected both stress-relaxation and cyclical loading of cartilage. Stress-relaxation was faster under higher ionic strength. CaCl(2) concentration increases resulted in decreased peak stress, while NaCl increases resulted in decreased equilibrium stress. Storage and loss moduli were affected differently by NaCl and CaCl(2). Conclusions: These results show that cartilage stress-relaxation proceeds faster under higher concentrations of solution cations, consistent with the theory of polymer dynamics. These data demonstrate the complexity of cartilage mechanical properties and suggest that aggrecan stiffness may be important in tissue-level cartilage viscoelastic properties. (C) 2008 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据