4.2 Article

One-step Articular Cartilage Repair: Combination of In Situ Bone Marrow Stem Cells With Cell-free Poly(L-lactic-co-glycolic Acid) Scaffold in a Rabbit Model

期刊

ORTHOPEDICS
卷 35, 期 5, 页码 E665-E671

出版社

SLACK INC
DOI: 10.3928/01477447-20120426-20

关键词

-

资金

  1. National Natural Science Foundation of China [81071474]
  2. Program for Changjiang Scholars and Innovative Research Team in University [BMU2009129-112]
  3. Research Fund for the Doctoral Program of Higher Education of China [20100001110086]

向作者/读者索取更多资源

Focal full-thickness articular cartilage defects are challenging to repair. The purpose of this study was to find a simple, effective 1-step articular cartilage repair method. Because stem cell niches produce a microenvironment for stem cell self-renewal, proliferation, and differentiation, we integrated in situ bone marrow stem cells with an implanted poly(L-lactic-co-glycolic acid) (PLLGA) scaffold. Marrow stem cells grew and proliferated on cell-free PLLGA scaffolds, which were evaluated by scanning electronic microscopy (SEM) and Cell Counting Kit-8 (Dojindo, Kumamoto, Japan). Twenty-seven rabbits (54 knees) with large cylinder femoral trochlear cartilage defects were created and repaired with microfracture and cell-free PLLGA scaffold implantation (group 1), microfracture (group 2), or cell-free PLLGA scaffold implantation (group 3). Outcomes were evaluated by magnetic resonance imaging, International Cartilage Repair Society scores, histology, and immunohistochemistry. The repair effects were better in group 1 than in groups 2 and 3. In group 1, hyaline-like cartilage formed at week 24. Magnetic resonance imaging showed homogeneous signals as the adjacent normal cartilage. Collagen type II and toluidine blue were stained positively as normal cartilage tissue, and the color and thickness of regenerated tissue were similar to surrounding normal tissue. The combination of microfracture and cell-free PLLGA scaffold implantation used endogenous marrow stem cells in situ and promoted hyaline-like cartilage regeneration rapidly and effectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据