4.5 Article

Microbial sources of intact polar diacylglycerolipids in the Western North Atlantic Ocean

期刊

ORGANIC GEOCHEMISTRY
卷 42, 期 7, 页码 803-811

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.orggeochem.2011.05.003

关键词

-

资金

  1. Division Of Ocean Sciences
  2. Directorate For Geosciences [1031143] Funding Source: National Science Foundation

向作者/读者索取更多资源

Intact polar membrane lipids are essential components of microbial membranes and recent work has uncovered a diversity of them occurring in the ocean. While it has long been understood that lipid composition varies across microbial groups, the microbial origins of the intact polar lipids in the surface ocean remain to be fully explained. This study focused on identifying the microbial sources of intact polar diacylglycerolipids (IP-DAGs) in the surface waters of the western North Atlantic Ocean. We used three approaches to define these microbial sources: (i) C-13 tracing to identify photoautotrophic and heterotrophic production of the major classes of IP-DAGs, (ii) cell sorting flow cytometry of Prochlorococcus, Synechococcus and heterotrophic bacteria to determine IP-DAG composition and (iii) regrowth incubations targeting IP-DAG production by heterotrophic bacteria. Stable isotope tracing indicated that sulfoquinovosyldiacylglycerol (SQDG) and diacylglyceryl-trimethyl-homoserine (DGTS) were produced predominantly by photoautotrophs, while phosphatidylglycerol (PG) production was dominated by heterotrophic bacteria. Of the cells sorted with flow cytometry, Prochlorococcus and Synechococcus were found to have abundant glycolipids, while heterotrophic bacteria were dominated by phospholipids. The regrowth incubations showed that the growth of heterotrophic bacteria correlated with an increase in the concentration of PG, phosphatidylethanolamine (PE) and monoglycosyldiacylglycerol (MGDG). The finding of MGDG in heterotrophic bacteria differs from previous work, which had asserted that the membranes of heterotrophic bacteria in this environment were composed entirely of phospholipids. Overall, our findings indicate that phytoplankton are the primary source of SQDG and DGTS, while heterotrophic bacteria are the dominant source of PG, making these three compounds promising biomarkers for the study of microbes in the surface ocean. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据