4.6 Article

Low-cost and flexible printed graphene-PEDOT:PSS gas sensor for ammonia detection

期刊

ORGANIC ELECTRONICS
卷 15, 期 11, 页码 2971-2981

出版社

ELSEVIER
DOI: 10.1016/j.orgel.2014.08.044

关键词

Printed electronics; Flexible sensor; Conducting polymer; PEDOT:PSS; NH3 sensor

资金

  1. Kasetsart University Research and Development Institute (KURDI)
  2. Graduate School, Kasetsart University

向作者/读者索取更多资源

This work presents a simple, low-cost and practical inkjet-printing technique for fabricating an innovative flexible gas sensor made of graphene-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composite film with high uniformity over a large area. An electronic ink prepared by graphene dispersion in PEDOT:PSS conducting polymer solution is inkjet-printed on a transparency substrate with prefabricated electrodes and investigated for ammonia (NH3) detection at room temperature. Transmission electron microscopy, Fourier transform infrared spectroscopy, UV-visible spectrometer and Raman characterizations confirm the presence of few-layer graphene in PEDOT:PSS polymer matrix and the present of pi-pi interactions between graphene and PEDOT:PSS. The ink-jet printed graphene-PEDOT:PSS gas sensor exhibits high response and high selectivity to NH3 in a low concentration range of 25-1000 ppm at room temperature. The attained gas-sensing performance may be attributed to the increased specific surface area by graphene and enhanced interactions between the sensing film and NH3 molecules via pi electrons network. The NH3-sensing mechanisms of the flexible printed gas sensor based on chemisorbed oxygen interactions, direct charge transfers and swelling process are highlighted. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据