4.6 Article

Fixed negative interface charges compromise organic ferroelectric field-effect transistors

期刊

ORGANIC ELECTRONICS
卷 13, 期 5, 页码 875-884

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.orgel.2012.01.034

关键词

Organic TFT; Memory device; Ferroelectric polymer; Organic FeFET; Ferroelectric polarization; Trapped charges

资金

  1. British Council [ARC 1294]
  2. DAAD [D/07/09993]
  3. Fraunhofer Institute for Applied Polymer Research in Potsdam

向作者/读者索取更多资源

Capacitance-voltage (C-V) and current-voltage measurements have been undertaken on metal-ferroelectric-semiconductor capacitors and ferroelectric field-effect transistors (FeFETs) using the ferroelectric polymer poly(vinylidenefluoride-trifluoroethylene) as the gate insulator and poly(3-hexylthiophene) as the active semiconductor. C-V measurements, voltage-dependence of gate currents and FeFET transfer characteristics all confirm that ferroelectric polarization is stable and only reverses when positive/negative coercive fields are exceeded for the first time. The apparent instability observed following the application of depletion voltages arises from the development of a negative interfacial charge which more than compensates the ferroelectric-induced shift, resulting in a permanent shift in threshold voltage to positive values. Application of successive bipolar voltage sweeps to a diode-connected FeFET show that significant remanent polarization is only induced in an unpoled device when the coercive field is exceeded during the first application of accumulation voltages. This initial polarization and its growth during subsequent bipolar voltage sweeps is accompanied by the accumulation of the fixed interfacial negative charges which cause the positive turn on voltages seen in C-V and transfer characteristics. The origin of the negative charge is ascribed either to layers of irreversible ferroelectric domains at the insulator surface or to the drift to the insulator-semiconductor interface of F-ions produced electrolytically during the application of accumulation voltages. (C) 2012 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据