4.6 Article

Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder

期刊

ORGANIC ELECTRONICS
卷 10, 期 3, 页码 437-445

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.orgel.2009.01.005

关键词

Hopping mobility; Gaussian disorder; Correlated disorder; Poole-Frenkel law; Hole-only device; Poly-phenylene-vinylene

向作者/读者索取更多资源

Recently, it has been demonstrated that for organic semiconductors with a Gaussian density of states (DOS) and with on-site energies that are spatially uncorrelated the hopping mobility of charge-carriers can be strongly carrier-density-dependent (extended Gaussian disorder model, EGDM). In the literature, it has been argued that for some materials, the on-site energies are actually spatially correlated. In this paper, we develop a full description of the mobility in a correlated Gaussian DOS (extended correlated disorder model, ECDM), using a master-equation method. We show that the mobility is less strongly carrier-density-dependent than in the EGDM, but that the field dependence is more pronounced. The field dependence is found to be described by a Poole-Frenkel factor, as has been deduced from empirical analyses of experimental data, but only in a limited field range. As an example of an application, we present a comparison between analyses of the current-voltage-temperature J(V,T) characteristics of a poly-phenylene-vinylene (PPV) based hole-only device using the EGDM and the ECDM. For both cases, excellent fits can be obtained, but with the EGDM a more realistic value of the intersite distance is found than in the case of the ECDM. We view this as an indication that site-energy correlations do not play an important role in PPV. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据