4.6 Article

Computational study of the mechanism of amide bond formation via CS2-releasing 1,3-acyl transfer

期刊

ORGANIC & BIOMOLECULAR CHEMISTRY
卷 16, 期 32, 页码 5808-5815

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ob01338a

关键词

-

资金

  1. National Natural Science Foundation of China [21702119, 21473100]
  2. Natural Science Foundation of Shandong Province [ZR2017QB001]

向作者/读者索取更多资源

Reactions of thiocarboxylic acids and dithiocarbamate-terminal amines provide a linker-traceless method for amide bond formation under mild conditions, whereas the reaction mechanism is not clear. A systematic study was performed herein with density functional theory (DFT) calculations to elucidate the detailed mechanism, the substitution effect on the proposed CS2-releasing 1,3-acyl transfer and the differences between CS2- and CO2-releasing 1,3-acyl transfer. Relevant results indicate that this type of reaction proceeds via the nucleophilic addition of an in situ generated dithiocarbamic acid on thiocarboxylic acid, H2S elimination, rate-determining 1,3-acyl transfer and CS2 release. For the generation of secondary amides via the 1,3-acyl transfer, a thiocarboxylic acid- or dithiocarbamic acid-assisted pathway, in which both the carbonyl group and amide nitrogen are activated, is the most favored. For the generation of tertiary amides, MeOH-assisted carbonyl-activation is the most favorable pathway. N,N-Dialkyl substitution of the mixed anhydride intermediate promotes the 1,3-acyl transfer by the steric effect. In contrast, N-phenyl substitution and using thiobenzoic acid as a substrate slow down 1,3-acyl transfer by both the conjugation effect and steric effect. Furthermore, CS2-releasing 1,3-acyl transfer was found to be favored over CO2-releasing 1,3-acyl transfer in the aspects of both kinetics and thermodynamics mainly because the S-COR bond is weaker than the O-COR bond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据