4.6 Article

Highly efficient and concise synthesis of both antipodes of SB204900, clausenamide, neoclausenamide, homoclausenamide and zeta-clausenamide. Implication of biosynthetic pathways of clausena alkaloids

期刊

ORGANIC & BIOMOLECULAR CHEMISTRY
卷 7, 期 12, 页码 2628-2634

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b901965k

关键词

-

资金

  1. Ministry of Science and Technology [2009CB724704, 2006CB806106]
  2. National Natural Science Foundation of China [20772132, 20820102034]
  3. Chinese Academy of Sciences

向作者/读者索取更多资源

The synthesis of both antipodes of N-methyl-N-[(Z)-styryl]-3-phenyloxirane-2-carboxamide (SB204900), clausenamide, neoclausenamide, homoclausenamide and zeta-clausenamide have been accomplished using (2S,3R)- and (2R,3S)-3-phenyloxirane-2-carboxamides as the starting materials, and SB204900 was found to be a common precursor to other N-heterocyclic clausena alkaloids. Mediated by Bronsted acids under different conditions, for example, SB204900 underwent efficient and diverse alkene-epoxide cyclization, enamide-epoxide cyclization and arene-epoxide cyclization reactions to produce the five-membered N-heterocyclic neoclausenamide, its 6-epimer, the six-membered N-heterocyclic homoclausenamide and the eight-membered N-heterocyclic zeta-clausenamide, respectively, in good to excellent yields. Regiospecific oxidation of neoclausenamide and its 6-epimer afforded neoclausenamidone. Enolization of neoclausenamidone in the presence of LiOH and the subsequent protonation under kinetic conditions at -78 degrees C led to the epimerization of neoclausenamidone into clausenamidone. Reduction of clausenamidone using NaBH4 furnished clausenamide in high yield.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据