4.7 Review

Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study

期刊

ORE GEOLOGY REVIEWS
卷 39, 期 4, 页码 188-217

出版社

ELSEVIER
DOI: 10.1016/j.oregeorev.2011.03.001

关键词

Sphalerite; Mineral chemistry; LA-ICPMS trace element analysis; Indium; South China

资金

  1. National '973 Project' [2009CB421003]
  2. Chinese Academy of Sciences [KZCX2-YW-136-2, KZCX2-YW-111-03]
  3. Foundation of State Key Laboratory of Ore Deposit Geochemistry
  4. China Science Foundation

向作者/读者索取更多资源

Laser-ablation ICP mass-spectroscopy has been used to investigate the geochemistry of sphalerite in a range of nine Zn-Pb deposits in South China. The deposits, which are of different ages and belong to different metallogenic provinces, have been assigned to the following genetic types: skarn (Hetaoping, Luziyuan), syngenetic massive sulphide (Dabaoshan, Laochang and Bainiuchang) and Mississippi-Valley-type (Huize, Mengxing, Niujiaotang) based on the features of the ore, even though their origin is heavily debated based on other criteria. The giant Jinding deposit is considered separately. Sphalerite from each genetic class of deposit shows a distinct chemical signature. Sphalerite from the skarn deposits is characterised by elevated, lattice-bound concentrations of Co and Mn. The distal character of these skarn systems is reflected by the low In content of sphalerite. The three syngenetic massive sulphide deposits feature sphalerite strongly enriched in In, Sn and Ga, whereas the deposits of MVT-type are typically enriched in Ge. Cd, Tl and As. These divergent characters are reflected in absolute element abundances as well as in element ratios. Time-resolved depth profiles for sphalerite from the Chinese deposits confirm the presence of elements such as Co, In, Ge, Ga, and Cd in solid solution, but the dataset expands the understanding of sphalerite mineral chemistry by also indicating that other elements, whose ability to enter the crystal structure of sphalerite has been previously debated (Ag, Sn, Tl, Sb), may also be in solid solution. Sphalerite is a refractory mineral and trace element analysis of sphalerite shows promise as a tracer of ore genesis even in overprinted ores. Systematic work on larger sample suites may help define the geochemical signature of different metallogenic epochs in regions as geologically complex as South China and help resolve the mechanism by which many of the debated ore deposits were formed. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据