4.5 Article

Nonlinear model predictive control strategy for low thrust spacecraft missions

期刊

OPTIMAL CONTROL APPLICATIONS & METHODS
卷 35, 期 1, 页码 1-20

出版社

WILEY
DOI: 10.1002/oca.2049

关键词

model predictive control; rendezvous; trajectory optimization; spacecraft; low thrust

向作者/读者索取更多资源

In this paper, two nonlinear model predictive control (MPC) strategies are applied to solve a low thrust interplanetary rendezvous problem. Each employs a unique, nonclassical parameterization of the control to adapt the nonlinear MPC approach to interplanetary orbital dynamics with low control authority. The approach is demonstrated numerically for a minimum-fuel Earth-to-Mars rendezvous maneuver, cast as a simplified coplanar circular orbit heliocentric transfer problem. The interplanetary transfer is accomplished by repeated solution of an optimal control problem over (i) a receding horizon with fixed number of control subintervals and (ii) a receding horizon with shrinking number of control subintervals, with a doubling strategy to maintain controllability. In both cases, the end time is left unconstrained. The performances of the nonlinear MPC strategies in terms of computation time, fuel consumption, and transfer time are compared for a constant thrust nuclear-electric propulsion system. For this example, the ability to withstand unmodeled effects and control allocation errors is verified. The second strategy, with shrinking number of control subintervals, is also shown to easily handle the more complicated bounded thrust nuclear-electric case, as well as a state-control-constrained solar-electric case. Copyright (c) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据