4.6 Article

Triple Wollaston-prism complete-Stokes imaging polarimeter

期刊

OPTICS LETTERS
卷 38, 期 19, 页码 3874-3877

出版社

Optica Publishing Group
DOI: 10.1364/OL.38.003874

关键词

-

类别

向作者/读者索取更多资源

Imaging polarimetry is emerging as a powerful tool for remote sensing in space science, Earth science, biology, defense, national security, and industry. Polarimetry provides complementary information about a scene in the visible and infrared wavelengths. For example, surface texture, material composition, and molecular structure will affect the polarization state of reflected, scattered, or emitted light. We demonstrate an imaging polarimeter design that uses three Wollaston prisms, addressing several technical challenges associated with moving remote-sensing platforms. This compact design has no moving polarization elements and separates the polarization components in the pupil (or Fourier) plane, analogous to the way a grating spectrometer works. In addition, this concept enables simultaneous characterization of unpolarized, linear, and circular components of optical polarization. The results from a visible-wavelength prototype of this imaging polarimeter are presented, demonstrating remote sensitivity to material properties. This work enables new remote sensing capabilities and provides a viable design concept for extensions into infrared wavelengths. (C)2013 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据