4.6 Article

Near-field probing the magnetic field vector of visible light with a silicon nanoparticle probe and nanopolarimetry

期刊

OPTICS EXPRESS
卷 26, 期 19, 页码 24637-24652

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.26.024637

关键词

-

类别

资金

  1. National Natural Science Foundation of China (NSFC) [61775113, 11474180, 61227014, 61177089]

向作者/读者索取更多资源

Magnetic light-matter interaction plays a crucial role in nanophysics, such as in photonic topological insulators and metamaterials. Recent advances in all-dielectric nanophotonics especially demand vectorial mapping of magnetic light at visible wavelengths. Here, we report that a novel functional nanoprobe decorated with a silicon nanoparticle predominantly senses both the vertical and lateral magnetic field, that is, the magnetic field vector, complementary to a metal nanoparticle probe detecting the local electric field vector. As a proof-of-principle experiment, we demonstrate the mapping of magnetic field vectors in a transverse electric (TE) evanescent standing wave by this probe in a scanning near-field optical microscope (SNOM) with nanopolarimetry. It is for the first time that the full magnetic field vector of visible light, whose frequency exceeds 550 THz, can be directly detected with deep subwavelength resolution. Such functional probe and nanopolarimetry may pave the way toward complete vectorial near-field characterization over the whole visible band for nano-optics and subwavelength optics. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据