4.6 Article

Concurrent polarization IR analysis to determine the 3D angles and the order parameter for molecular orientation imaging

期刊

OPTICS EXPRESS
卷 26, 期 19, 页码 24577-24590

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.26.024577

关键词

-

类别

资金

  1. Intramural NIST DOC [9999-NIST] Funding Source: Medline

向作者/读者索取更多资源

A non-tomographic analysis method is proposed to determine the 3D angles and the order parameter of molecular orientation using polarization-dependent infrared (IR) spectroscopy. Conventional polarization-based imaging approaches provide only 2D-projected orientational information of single vibrational modes. The newly proposed method concurrently analyses polarization angle-dependent absorptance of two non-parallel transition dipole moments. The relative phase angle and the maximum-to-minimum ratios observed from the two polarization profiles are used to calculate the 3D angles of the mean molecular orientation and the order parameter of the orientational distribution. Usage of those relative observables as intermediate input parameters makes the analysis results robust against variations in concentration, thickness, absorption peak, and absorption cross-section, which can occur in typical imaging conditions. This analysis is based on a single-step, non-iterative calculation that does not require any analytical model function of an orientational distribution function. This concurrent polarization analysis method is demonstrated using two simulation data examples, followed by associated error propagation analysis and discussion on the effect of absorption strength. Application of this robust spectral analysis method to polarization IR microscopy will provide a full molecular orientation image without tilting that tomographies require.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据