4.6 Article

Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity

期刊

OPTICS EXPRESS
卷 22, 期 13, 页码 15837-15867

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.22.015837

关键词

-

类别

资金

  1. College of Engineering and Applied Science, University of Colorado Boulder
  2. David & Lucile Packard Foundation through Packard Fellowship in Science Engineering
  3. University of Colorado Boulder Libraries Open Access Fund

向作者/读者索取更多资源

We propose optimal designs for triply-resonant parametric oscillators (OPOs) based on degenerate four-wave mixing (FWM) in microcavities. We show that optimal designs in general call for different external coupling to pump and signal/idler resonances. We provide a number of normalized performance metrics including threshold pump power and maximum achievable conversion efficiency for OPOs with and without two-photon (TPA) and free-carrier absorption (FCA). We find that the maximum achievable conversion efficiency is bound to an upper limit by nonlinear and free-carrier losses independent of pump power, while linear losses only increase the pump power required to achieve a certain conversion efficiency. The results of this work suggest unique advantages in on-chip implementations that allow explicit engineering of resonances, mode field overlaps, dispersion, and wavelength-and mode-selective coupling. We provide universal design curves that yield optimum designs, and give example designs of microring-resonator-based OPOs in silicon at the wavelengths 1.55 mu m (with TPA) and 2.3 mu m (no TPA) as well as in silicon nitride (Si3N4) at 1.55 mu m. For typical microcavity quality factor of 10(6), we show that the oscillation threshold in excitation bus can be well into the sub-mW regime for silicon microrings and a few mW for silicon nitride microrings. The conversion efficiency can be a few percent when pumped at 10 times of the threshold. Next, based on our results, we suggest a family of synthetic photonic molecule-like, coupled-cavity systems to implement optimum FWM, where structure design for control of resonant wavelengths can be separated from that of optimizing nonlinear conversion efficiency, and where furthermore pump, signal, and idler coupling to bus waveguides can be controlled independently, using interferometric cavity supermode coupling as an example. Finally, consideration of these complex geometries calls for a generalization of the nonlinear figure of merit (NFOM) as a metric for performance in nonlinear photonic systems, and shows different efficiencies for single and multi-cavity geometries, as well as for standing and traveling wave excitations. (C) 2014 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据