4.6 Article

FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series

期刊

OPTICS EXPRESS
卷 20, 期 16, 页码 17767-17782

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.20.017767

关键词

-

类别

资金

  1. NUS-BW (National University of Singapore / Baden-Wurttemberg)
  2. Helmholtz International Graduate School for Cancer Research
  3. Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences
  4. German-Hungarian program for the exchange of researchers by the German Academic Exchange Service
  5. Hungarian Scholarship Board [(MOB-47-1/2010) OTKA K77600]
  6. TAMOP [4.2.1/B-09/1/KONV-2010-00]

向作者/读者索取更多资源

With the evolving technology in CMOS integration, new classes of 2D-imaging detectors have recently become available. In particular, single photon avalanche diode (SPAD) arrays allow detection of single photons at high acquisition rates (>= 100kfps), which is about two orders of magnitude higher than with currently available cameras. Here we demonstrate the use of a SPAD array for imaging fluorescence correlation spectroscopy (imFCS), a tool to create 2D maps of the dynamics of fluorescent molecules inside living cells. Time-dependent fluorescence fluctuations, due to fluorophores entering and leaving the observed pixels, are evaluated by means of autocorrelation analysis. The multi-tau correlation algorithm is an appropriate choice, as it does not rely on the full data set to be held in memory. Thus, this algorithm can be efficiently implemented in custom logic. We describe a new implementation for massively parallel multi-tau correlation hardware. Our current implementation can calculate 1024 correlation functions at a resolution of 10 mu s in real-time and therefore correlate real-time image streams from high speed single photon cameras with thousands of pixels. (C) 2012 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据