4.6 Article

Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber

期刊

OPTICS EXPRESS
卷 20, 期 3, 页码 2460-2465

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.20.002460

关键词

-

类别

向作者/读者索取更多资源

A stable mode-locked fiber laser (MLFL) employing multi-layer graphene as saturable absorber (SA) is presented. The multi-layer graphene were grown by chemical vapor deposition (CVD) on Ni close to A-A stacking. Linear absorbance spectrum of multi-layer graphene was observed without absorption peak from 400 to 2000 nm. Optical nonlinearities of different atomic-layers (7-, 11-, 14-, and 21-layers) graphene based SA are investigated and compared. The results found that the thicker 21-layer graphene based SA exhibited a smaller modulation depth (MD) value of 2.93% due to more available density of states in the band structure of multilayer graphene and favored SA nonlinearity. A stable MLFL of 21-layer graphene based SA showed a pulsewidth of 432.47 fs, a bandwidth of 6.16 nm, and a time-bandwidth product (TBP) of 0.323 at fundamental soliton-like operation. This study demonstrates that the atomic-layer structure of graphene from CVD process may provide a reliable graphene based SA for stable soliton-like pulse formation of the MLFL. (C) 2012 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据