4.6 Article

Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion

期刊

OPTICS EXPRESS
卷 19, 期 15, 页码 14335-14347

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.19.014335

关键词

-

类别

资金

  1. National Institute of Health (NIH) [R01 AR055179, R01 CA91713-S1]

向作者/读者索取更多资源

The absorption spectrum of indocyanine green (ICG), a nontoxic dye used for medical diagnostics, depends upon its concentration as well as the nature of its environment, i.e., the solvent medium into which it is dissolved. In blood, ICG binds with plasma proteins, thus causing changes in its photoacoustic spectrum. We successfully encapsulated ICG in an ultrasound-triggerable perfluorocarbon double emulsion that prevents ICG from binding with plasma proteins. Photoacoustic spectral measurements on point target as well as 2-D photoacoustic images of blood vessels revealed that the photoacoustic spectrum changes significantly in blood when the ICG-loaded emulsion undergoes acoustic droplet vaporization (ADV), which is the conversion of liquid droplets into gas bubbles using ultrasound. We propose that these changes in the photoacoustic spectrum of the ICG emulsion in blood, coupled with photoacoustic tomography, could be used to spatially and quantitatively monitor ultrasound initiated drug delivery. In addition, we suggest that the photoacoustic spectral change induced by ultrasound exposure could also be used as contrast in photoacoustic imaging to obtain a background free image. (C)2011 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据