4.6 Article

Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection

期刊

OPTICS EXPRESS
卷 18, 期 14, 页码 14671-14678

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.18.014671

关键词

-

类别

资金

  1. CMC Microsystems
  2. Natural Sciences and Engineering Research Council of Canada
  3. Canadian Institute for Photonic Innovations

向作者/读者索取更多资源

We describe, model and demonstrate a tunable micro-ring resonator integrated monolithically with a photodiode in a silicon waveguide device. The photodiode is made sensitive to wavelengths at and around 1550nm via the introduction of lattice damage through selective ion implantation. The ring resonator enhances detector responsivity in a 60 mu m long waveguide photodiode such that it is 0.14 A/W at -10Vbias with less than 0.2 nA leakage current. The device is tunable such that resonance (and thus detection) can be achieved at any wavelength from 1510 - 1600 nm. We also demonstrate use of the device as a digital switch with integrated power monitoring, 20 dB extinction, and no optical power tapped from the output path to the photodiode. A theoretical description suggests that for a critically coupled resonator where the round trip loss is dominated by the excess defects used to mediate detection, the maximum responsivity is independent of device length. This leads to the possibility of extremely small detector geometries in silicon photonics with no requirement for the use of III-V materials or germanium. (C) 2010 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据