4.6 Article

Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system

期刊

OPTICS EXPRESS
卷 17, 期 14, 页码 12121-12131

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.17.012121

关键词

-

类别

资金

  1. National High Technology Research and Development Program of China [2006AA02Z4E0]
  2. Natural Science Foundation of China [60878057]

向作者/读者索取更多资源

We develop a high speed spectral domain optical coherence tomography (SD-OCT) system based on a custom-built spectrometer and non-uniform discrete Fourier transform (NDFT) to realize minimized depth dependent sensitivity fall-off. After precise spectral calibration of the spectrometer, NDFT of the acquired spectral data is adopted for image reconstruction. The spectrometer is able to measure a wavelength range of about 138nm with a spectral resolution of 0.0674nm at central wavelength of 835nm, corresponding to an axial imaging range of 2.56mm in air. Zemax simulations and sensitivity fall-off measurements under two alignment states of the spectrometer are given. Both theoretical simulations and experiments are done to study the depth dependent sensitivity of the developed system based on NDFT in contrast to those based on conventional discrete Fourier transform (DFT) with and without interpolation. In vivo imaging on human finger from volunteer is conducted at A-scan rate of 29 kHz and reconstruction is done based on different methods. The comparing results confirm that reconstruction method based on NDFT indeed improves sensitivity especially at large depth while maintaining the coherence-function-limited depth resolution. (C) 2009 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据