4.6 Article

Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution

期刊

OPTICS EXPRESS
卷 17, 期 19, 页码 17190-17199

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.17.017190

关键词

-

类别

资金

  1. Deutsche Forschungsgemeinschaft (DFG)
  2. Technische Universitat Dresden

向作者/读者索取更多资源

In optical tweezers, thermal drift is detrimental for high-resolution measurements. In particular, absorption of the trapping laser light by the microscope objective that focuses the beam leads to heating of the objective and subsequent drift. This entails long equilibration times which may limit sensitive biophysical assays. Here, we introduce an objective temperature feedback system for minimizing thermal drift. We measured that the infrared laser heated the objective by 0.7 K per watt of laser power and that the laser focus moved relative to the sample by approximate to 1 nm/mK due to thermal expansion of the objective. The feedback stabilized the temperature of the trapping objective with millikelvin precision. This enhanced the long-term temperature stability and significantly reduced the settling time of the instrument to about 100 s after a temperature disturbance while preserving single DNA base-pair resolution of surface-coupled assays. Minimizing systematic temperature changes of the objective and concurrent drift is of interest for other high-resolution microscopy techniques. Furthermore, temperature control is often a desirable parameter in biophysical experiments. (C) 2009 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据