4.6 Article

Enhanced direct bandgap emission in germanium by micromechanical strain engineering

期刊

OPTICS EXPRESS
卷 17, 期 18, 页码 16358-16365

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.17.016358

关键词

-

类别

向作者/读者索取更多资源

We propose a new class of optoelectronic devices in which the optical properties of the active material is enhanced by strain generated from micromechanical structures. As a concrete example, we modeled the emission efficiency of strained germanium supported by a cantilever-like platform. Our simulations indicate that net optical gain is obtainable even in indirect germanium under a substrate biaxial tensile strain of about 1.5% with an electron-hole injection concentration of 9x10(18) cm(-3) while direct bandgap germanium becomes available at a strain of 2%. A large wavelength tuning span of 400 nm in the mid-IR range also opens up the possibility of a tunable on-chip germanium biomedical light source. (C) 2009 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据