4.6 Article

Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors

期刊

OPTICS EXPRESS
卷 16, 期 10, 页码 7214-7223

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.16.007214

关键词

-

类别

向作者/读者索取更多资源

As a visualizing and quantitative method, Fluorescence Molecular Tomography (FMT) has many potential applications in biomedical field and its three-dimensional (3D) implementation is needed in both theory and practice. In this paper, we propose a 3D scheme for time-domain FMT within the normalized Born-ratio formulation. A finite element method solution to the Laplace transformed time-domain coupled diffusion equations is employed as the forward model, and the resultant linear inversions at two distinct transform-factors are solved with an algebraic reconstruction technique to separate fluorescent yield and lifetime images. The algorithm is validated using simulated data for 3D cylinder phantoms, and the spatial resolution and quantitativeness of the reconstruction assessed. We demonstrate that the proposed approach can accurately retrieve the positions and shapes of the targets with high spatial resolution and quantitative accuracy, and tolerate a signal-to-noise ratio down to 25dB by appropriately choosing the transform factors. (C) 2008 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据