4.6 Article

Electromagnetic force and torque in ponderable media

期刊

OPTICS EXPRESS
卷 16, 期 19, 页码 14821-14835

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.16.014821

关键词

-

类别

资金

  1. Air Force Office of Scientific Research (AFOSR) [FA 9550-04-1-0213]

向作者/读者索取更多资源

Maxwell's macroscopic equations combined with a generalized form of the Lorentz law of force are a complete and consistent set of equations. Not only are these five equations fully compatible with special relativity, they also conform with conservation laws of energy, momentum, and angular momentum. We demonstrate consistency with the conservation laws by showing that, when a beam of light enters a magnetic dielectric, a fraction of the incident linear (or angular) momentum pours into the medium at a rate determined by the Abraham momentum density, E x H/c(2), and the group velocity V-g of the electromagnetic field. The balance of the incident, reflected, and transmitted momenta is subsequently transferred to the medium as force (or torque) at the leading edge of the beam, which propagates through the medium with velocity Vg. Our analysis does not require hidden momenta to comply with the conservation laws, nor does it dissolve into ambiguities with regard to the nature of electromagnetic momentum in ponderable media. The linear and angular momenta of the electromagnetic field are clearly associated with the Abraham momentum, and the phase and group refractive indices (n(p) and n(g)) play distinct yet definitive roles in the expressions of force, torque, and momentum densities. (C) 2008 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据