4.6 Article

Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links

期刊

OPTICS EXPRESS
卷 16, 期 20, 页码 15777-15810

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.16.015777

关键词

-

类别

向作者/读者索取更多资源

We develop an analytic model of Coherent Optical Orthogonal Frequency Division Multiplexing (OFDM) propagation and detection over multi-span long-haul fiber links, comprehensively and rigorously analyzing the impairments due the combined effects of FWM, Dispersion and ASE noise. Consistent with prior work of Innoe and Schadt in the WDM context, our new closed-form expressions for the total FWM received power fluctuations in the wake of dispersive phase mismatch in OFDM transmission, indicate that the FWM contributions of the multitude of spans build-up on a phased-array basis. For particular ultra-long haul link designs, the effectiveness of dispersion in reducing FWM is far greater than previously assumed in OFDM system analysis. The key is having the dominant FWM intermodulation products due to the multiple spans, destructively interfere, mutually cancelling their FWM intermodulation products, analogous to operating at the null of a phased-array antenna system. By applying the new analysis tools, this mode of effectively mitigating the FWM impairment, is shown under specific dispersion and spectral management conditions, to substantially suppress the FWM power fluctuations. Accounting for the phased-array concept and applying the compact OFDM design formulas developed here, we analyzed system performance of a 40 Gbps coherent OFDM system, over standard G. 652 fiber, with cyclic prefix based electronic dispersion compensation but no optical compensation along the link. The transmission range for 10(-3) target BER is almost tripled from 2560 km to 6960 km, relative to a reference system performing optical dispersion compensation in every span (ideally accounting for FWM and ASE noise and the cyclic prefix overhead, but excluding additional impairments). (C) 2008 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据