4.6 Article

Quantification of three-dimensional dynamics of intercellular geometry under mechanical loading using a weighted directional adaptive-threshold method

期刊

OPTICS EXPRESS
卷 16, 期 16, 页码 12403-12414

出版社

Optica Publishing Group
DOI: 10.1364/OE.16.012403

关键词

-

类别

向作者/读者索取更多资源

Capturing and quantifying dynamic changes in three-dimensional cellular geometries on fast time scales is a challenge because of mechanical limitations of imaging systems as well as of the inherent tradeoffs between temporal resolution and image quality. We have combined a custom highspeed two-photon microscopy approach with a novel image segmentation method, the weighted directional adaptive-threshold (WDAT), to quantify the dimensions of intercellular spaces of cells under compressive stress on timescales previously inaccessible. The adaptation of a high-speed two-photon microscope addressed the need to capture events occurring on short timescales, while the WDAT method was developed to address artifacts of standard intensity-based analysis methods when applied to this system. Our novel approach is demonstrated by the enhanced temporal analysis of the three-dimensional cellular and extracellular deformations that accompany compressive loading of airway epithelial cells. (C) 2008 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据