4.7 Article

Temperature measurement of a premixed radially symmetric methane flame jet using the Mach-Zehnder Interferometry

期刊

OPTICS AND LASERS IN ENGINEERING
卷 49, 期 7, 页码 859-865

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.optlaseng.2011.02.020

关键词

Premixed methane combustion; Laminar symmetric flame jet; Mach-Zehnder Interferometer; Oxygen-enriched combustion (OEC); Temperature field

类别

向作者/读者索取更多资源

The temperature field of a premixed methane symmetric laminar flame jet is visualized by studying the interferograms of the flame, using the Mach-Zehnder Interferometry. Two kinds of oxidizers are chosen for combustion: industrially pure oxygen and oxygen-enriched air. The flame is chosen to be both lean, and rich. For the lean oxygen-enriched combustion (OEC), the equivalence ratio was held constant at 0.5, and the oxygen enrichment was adjusted to 0.5 and 0.6, and for rich OEC, equivalence ratio is chosen to be 1.2 while the oxygen enrichment was 0.7 and 0.8. For methane/oxygen combustion, the equivalence ratio varied from 0.35 to 0.55 for the lean flame, and 1.3 and 1.7 for the rich flame. Attempt was made to keep the Reynolds number unchanged at 500, for OEC, and 1000, for methane/oxygen flame. In the present study a non-contact method is successfully developed to measure the temperature field of a premixed radially symmetric laminar methane flame jet. The effect of oxygen enrichment and equivalence ratio on temperature field is also investigated and depicted. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据