4.5 Article

A dataset of future daily weather data for crop modelling over Europe derived from climate change scenarios

期刊

THEORETICAL AND APPLIED CLIMATOLOGY
卷 127, 期 3-4, 页码 573-585

出版社

SPRINGER WIEN
DOI: 10.1007/s00704-015-1650-4

关键词

-

资金

  1. project AgroScenari of the Italian Ministry for Agriculture, Food and Forestry Policies

向作者/读者索取更多资源

Coupled atmosphere-ocean general circulation models (GCMs) simulate different realizations of possible future climates at global scale under contrasting scenarios of land-use and greenhouse gas emissions. Such data require several additional processing steps before it can be used to drive impact models. Spatial downscaling, typically by regional climate models (RCM), and bias-correction are two such steps that have already been addressed for Europe. Yet, the errors in resulting daily meteorological variables may be too large for specific model applications. Crop simulation models are particularly sensitive to these inconsistencies and thus require further processing of GCM-RCM outputs. Moreover, crop models are often run in a stochastic manner by using various plausible weather time series (often generated using stochastic weather generators) to represent climate time scale for a period of interest (e.g. 2000 +/- 15 years), while GCM simulations typically provide a single time series for a given emission scenario. To inform agricultural policy-making, data on near- and medium-term decadal time scale is mostly requested, e.g. 2020 or 2030. Taking a sample of multiple years from these unique time series to represent time horizons in the near future is particularly problematic because selecting overlapping years may lead to spurious trends, creating artefacts in the results of the impact model simulations. This paper presents a database of consolidated and coherent future daily weather data for Europe that addresses these problems. Input data consist of daily temperature and precipitation from three dynamically downscaled and bias-corrected regional climate simulations of the IPCC A1B emission scenario created within the ENSEMBLES project. Solar radiation is estimated from temperature based on an auto-calibration procedure. Wind speed and relative air humidity are collected from historical series. From these variables, reference evapotranspiration and vapour pressure deficit are estimated ensuring consistency within daily records. The weather generator ClimGen is then used to create 30 synthetic years of all variables to characterize the time horizons of 2000, 2020 and 2030, which can readily be used for crop modelling studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据