4.7 Article

Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera

期刊

OPTICS AND LASER TECHNOLOGY
卷 40, 期 1, 页码 30-38

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.optlastec.2007.04.004

关键词

LIBS; Echelle spectrometers; Al alloys

向作者/读者索取更多资源

Laser-induced breakdown spectroscopy (LIBS) is a laser-based technique that can provide non-intrusive, qualitative and quantitative measurement of metals in various environments. LIBS uses the plasma generated by a high-energy laser beam to prepare and excite the sample in one step. In the present work, LIBS has been applied to perform elemental analysis of six trace elements simultaneously in aluminum alloy targets. The plasma is generated by focusing a pulsed Nd:YAG laser on the target in air at atmospheric pressure. LIBS limit of detection (LOD) is affected by many experimental parameters such as interferences, self-absorption, spectral overlap and matrix effect. We aimed to improve the LIBS LOD by optimizing these experimental parameters as possible. In doing so, a portable Echelle spectrometer with intensified CCD camera was used to detect the LIBS plasma emission. This advanced Echelle spectrometer provides a constant spectral resolution (CSR) of 7500 corresponding to 4 pixels FWHM over a wavelength range 200-1000nin displayable in a single spectrum. Then, the calibration curves for iron, beryllium, magnesium, silicon, manganese and copper as minor elements were achieved with linear regression coefficients between 98-99% on average in aluminum standard sample alloys. New LOD values were achieved in the ppm range with high precision (RSD 3-8%). From the application view point, improving LIBS LOD is very important in the on-line industrial process control to follow-up multi-elements for the correct alloying in metals. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据