4.0 Article

Novel truncating mutation in CACNA1F in a young male patient diagnosed with optic atrophy

期刊

OPHTHALMIC GENETICS
卷 39, 期 6, 页码 741-748

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/13816810.2018.1520263

关键词

CACNA1F; genetic testing; incomplete congenital stationary night blindness (iCSNB); optic atrophy; whole-exome sequencing

向作者/读者索取更多资源

Background: Low vision in children can be accompanied by pallor of the optic disc with little or no characteristic morphologic changes of the retina. A variety of diseases can be the underlying cause, including hereditary optic atrophy, Leber's congenital amaurosis (LCA), achromatopsia, and calcium channel, voltage-dependent, L-type, alpha-1F subunit gene (CACNA1F)-associated retinopathy (most widely known as incomplete congenital stationary night blindness: iCSNB). Differentiation at early age is desirable due to large differences in prognosis, but may be difficult because phenotypes overlap and electrophysiological testing is challenging in young patients. We present the case of a 6-year-old boy with unexplained low vision and pallor of the optic disc who originally had been diagnosed with hereditary optic atrophy in the absence of recordable full-field electroretinography (ERG) due to poor patient cooperation. Materials and Methods: Standard Sanger sequencing excluded mutations in the OPA1 gene (autosomal-dominant optic atrophy). To identify the underlying genetic cause, whole-exome sequencing was performed on patient's DNA. Recording of the full-field ERG was successfully performed 6 months later. Results: We identified a novel truncating mutation in CACNA1F gene (NM_001256789: c.3895C > T in exon 33) which led to the correct diagnosis of CACNA1F-associated retinopathy in the young boy. ERG recordings showed a negative scotopic mixed response with preserved oscillatory potentials and a flicker ERG with reduced amplitude and biphasic waveform, compatible with a CACNA1F-asssociated phenotype. Conclusions: We show that genetic testing may help to differentiate between optic atrophy, LCA, and CACNA1F-associated retinopathy at a much earlier age, in absence of electrophysiological examination and by widely overlapping phenotypes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据