4.5 Article

Optimal position-based warehouse ordering in divergent two-echelon inventory systems

期刊

OPERATIONS RESEARCH
卷 56, 期 4, 页码 976-991

出版社

INFORMS
DOI: 10.1287/opre.1080.0560

关键词

-

向作者/读者索取更多资源

A continuous-review two-echelon inventory system with one central warehouse and a number of nonidentical retailers is considered. The retailers face independent Poisson demand and apply standard (R, Q) policies. The retailer order quantities are fixed integer multiples of a certain batch size, representing the smallest pallet or container size transported in the system. A warehouse order may consist of one or several such batches. We derive a new policy for warehouse ordering, which is optimal in the broad class of position-based policies relying on complete information about the retailer inventory positions, transportation times, cost structures, and demand distributions at all facilities. The exact analysis of the new policy includes a method for determining the expected total inventory holding and backorder costs for the entire system. The class of position-based policies encompasses both the traditional installation-stock and echelon-stock (R, Q) policies, as well as the more sophisticated policies recently analyzed in the literature. The value of more carefully incorporating a richer information structure into the warehouse ordering policy is illustrated in a numerical study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据