4.8 Article

EGFRvIII stimulates glioma growth and invasion through PKA-dependent serine phosphorylation of Dock180

期刊

ONCOGENE
卷 33, 期 19, 页码 2504-2512

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2013.198

关键词

glioblastomas; EGFRvIII; Dock180; phosphorylation; PKA

资金

  1. University of Pittsburgh Cancer Institute
  2. NIH [CA130966, CA158911]
  3. Northwestern Brain Tumor Institute
  4. Department of Neurology at Northwestern University Feinberg School of Medicine
  5. Zell Scholar Award from the Zell Family Foundation
  6. Brain Cancer Research
  7. Pennsylvania Department of Health
  8. Innovative Research Scholar Awards of the Hillman Foundation

向作者/读者索取更多资源

Glioblastomas (GBMs), the most common and malignant brain tumors, are highly resistant to current therapies. The failure of targeted therapies against aberrantly activated oncogenic signaling, such as that of the EGFR-PI3K/Akt pathway, underscores the urgent need to understand alternative downstream pathways and to identify new molecular targets for the development of more effective treatments for gliomas. Here, we report that EGFRvIII (Delta EGFR/de2-7EGFR), a constitutively active EGFR mutant that is frequently co-overexpressed with EGFR in clinical GBM tumors, promotes glioma growth and invasion through protein kinase A (PKA)-dependent phosphorylation of Dock180, a bipartite guanine nucleotide exchange factor (GEF) for Rac1. We demonstrate that EGFRvIII induces serine phosphorylation of Dock180, stimulates Rac1 activation and glioma cell migration. Treatments of glioma cells using the PKA inhibitors H-89 and KT5720, overexpression of a PKA inhibitor (PKI), and in vitro PKA kinase assays show that EGFRvIII induction of serine phosphorylation of Dock180 is PKA-dependent. Significantly, PKA induces phosphorylation of Dock180 at amino acid residue S1250 that resides within its Rac1-activating DHR-2 domain. Expression of the Dock180(S1250L) mutant, but not wild type Dock180(WT), protein in EGFRvIII-expressing glioma cells inhibited receptor-stimulated cell proliferation, survival, migration in vitro and glioma tumor growth and invasion in vivo. Together, our findings describe a novel mechanism by which EGFRvIII drives glioma tumorigenesis and invasion through PKA-dependent phosphorylation of Dock180, thereby suggesting that targeting EGFRvIII-PKA-Dock180-Rac1 signaling axis could provide a novel pathway to develop potential therapeutic strategies for malignant gliomas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据