4.8 Review

The evolution of the TOR pathway and its role in cancer

期刊

ONCOGENE
卷 32, 期 34, 页码 3923-3932

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2012.567

关键词

mTOR; cancer; leukemia

向作者/读者索取更多资源

The target of rapamycin (TOR) pathway is highly conserved among eukaryotes and has evolved to couple nutrient sensing to cellular growth. TOR is found in two distinct signaling complexes in cells, TOR complex 1 (TORC1) and TOR complex 2 (TORC2). These complexes are differentially regulated and act as effectors for the generation of signals that drive diverse cellular processes such as growth, proliferation, protein synthesis, rearrangement of the cytoskeleton, autophagy, metabolism and survival. Mammalian TOR (mTOR) is very important for development in embryos, while in adult organisms it is linked to aging and lifespan effects. In humans, the mTOR pathway is implicated in the tumorigenesis of multiple cancer types and its deregulation is associated with familial cancer syndromes. Because of its high biological relevance, different therapeutic strategies have been developed to target this signaling cascade, resulting in the emergence of unique pharmacological inhibitors that are either already approved for use in clinical oncology or currently under preclinical or clinical development. Multimodal treatment strategies that simultaneously target multiple nodes of the pathway and/or negative feedback regulatory loops may ultimately provide the best therapeutic advantage in targeting this pathway for the treatment of malignancies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据