4.8 Article

Selective activation of Akt1 by mammalian target of rapamycin complex 2 regulates cancer cell migration, invasion, and metastasis

期刊

ONCOGENE
卷 30, 期 26, 页码 2954-2963

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2011.22

关键词

Akt; invasion; metastasis; mTOR; P-Rex1

资金

  1. Korea government (MEST) [2010-0015808]
  2. Cancer Control, Ministry for Health, Welfare and Family affairs, Republic of Korea [0920050]

向作者/读者索取更多资源

Mammalian target of rapamycin complex (mTORC) regulates a variety of cellular responses including proliferation, growth, differentiation and cell migration. In this study, we show that mammalian target of rapamycin complex 2 (mTORC2) regulates invasive cancer cell migration through selective activation of Akt1. Insulin-like growth factor-1 (IGF-1)-induced SKOV-3 cell migration was completely abolished by phosphatidylinositol 3-kinase (PI3K) (LY294002, 10 mu M) or Akt inhibitors (SH-5, 50 mu M), whereas inhibition of extracellular-regulated kinase by an ERK inhibitor (PD98059, 10 mu M) or inhibition of mammalian target of rapamycin complex 1 (mTORC1) by an mTORC1 inhibitor (Rapamycin, 100 nM) did not affect IGF-1-induced SKOV-3 cell migration. Inactivation of mTORC2 by silencing Rapamycin-insensitive companion of mTOR (Rictor), abolished IGF-1-induced SKOV-3 cell migration as well as activation of Akt. However, inactivation of mTORC1 by silencing of Raptor had no effect. Silencing of Akt1 but not Akt2 attenuated IGF-1-induced SKOV-3 cell migration. Rictor was preferentially associated with Akt1 rather than Akt2, and overexpression of Rictor facilitated IGF-1-induced Akt1 activation. Expression of PIP3-dependent Rac exchanger1 (P-Rex1), a Rac guanosine exchange factor and a component of the mTOR complex, strongly stimulated activation of Akt1. Furthermore, knockdown of P-Rex1 attenuated Akt activation as well as IGF-1-induced SKOV-3 cell migration. Silencing of Akt1 or P-Rex1 abolished IGF-1-induced SKOV-3 cell invasion. Finally, silencing of Akt1 blocked in vivo metastasis, whereas silencing of Akt2 did not. Given these results, we suggest that selective activation of Akt1 through mTORC2 and P-Rex1 regulates cancer cell migration, invasion and metastasis. Oncogene (2011) 30, 2954-2963; doi:10.1038/onc.2011.22; published online 21 February 2011

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据