4.8 Article

Ribonucleotide reductase small subunit p53R2 suppresses MEK-ERK activity by binding to ERK kinase 2

期刊

ONCOGENE
卷 28, 期 21, 页码 2173-2184

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2009.84

关键词

p53R2; MEK2; ERK1/2; invasion; transformation

资金

  1. Ministry of Science and Technology, the Korean Government [M 1063901, M 20706000032]
  2. Chosun University

向作者/读者索取更多资源

The p53-dependent RR small subunit (p53R2) protein, a newly identified member of the ribonucleotide reductase family, plays a key role in the p53-dependent cellular response to DNA. Several recent studies have suggested that p53R2 also plays an important role in suppressing the invasive potential of human cancer cells. However, the cellular mechanism that regulates invasiveness remains largely unknown. In this study, we show that p53R2 interacts with MEK2 (extracellular signal-regulated kinase (ERK) kinase 2-mitogen-activated protein kinase (MAPK) kinase 2), the molecule immediately upstream of ERK in the Ras-Raf-MAPK signaling cascade. In co-immunoprecipitation and immunofluorescence analyses, we found that p53R2 and MEK2 interact physically in cultured mammalian cells, and that the p53R2 segment comprising amino acids 161-206 is critical for this interaction. Moreover, serum-induced phosphorylation of MEK1/2 and ERK1/2 was greatly augmented in human cancer cells expressing small-interfering RNA against p53R2. On the other hand, phosphorylation of MEK1/2 and ERK1/2 in human cancer cells was markedly attenuated by overexpression of p53R2. Furthermore, MEK2 was required for p53R2 knockdown-induced enhancement of the invasive ability and anchorage-independent growth of human lung cancer H1299 cells. Taken together, these findings show that p53R2 negatively modulates serum-induced MEK-ERK activity and inhibits the MEK-ERK-mediated malignancy potential of human cancer cells. Oncogene (2009) 28, 2173-2184; doi: 10.1038/onc.2009.84; published online 27 April 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据