4.8 Article

Genetic disruption of the Nrf2 compromises cell-cycle progression by impairing GSH-induced redox signaling

期刊

ONCOGENE
卷 27, 期 44, 页码 5821-5832

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2008.188

关键词

oxidative stress; Nrf2; cell cycle; G(2)/M-checkpoint; Akt

资金

  1. NIH [HL66109, ES11863]
  2. SCCOR [P50 HL073994]
  3. NIEHS [P30 ES 038819]

向作者/读者索取更多资源

Genetic disruption of Nrf2 greatly enhances susceptibility to prooxidant- and carcinogen-induced experimental models of various human disorders; but the mechanisms by which this transcription factor confers protection are unclear. Using Nrf2-proficient (Nrf2(+/+)) and Nrf2-deficient (Nrf2(-/-)) primary epithelial cultures as a model, we now show that Nrf2 deficiency leads to oxidative stress and DNA lesions, accompanied by impairment of cell-cycle progression, mainly G(2)/M-phase arrest. Both N-acetylcysteine and glutathione (GSH) supplementation ablated the DNA lesions and DNA damage-response pathways in Nrf2(-/-) cells; however only GSH could rescue the impaired colocalization of mitosis-promoting factors and the growth arrest. Akt activation was deregulated in Nrf2(-/-) cells, but GSH supplementation restored it. Inhibition of Akt signaling greatly diminished the GSH-induced Nrf2(-/-) cell proliferation and wild-type cell proliferation. GSH depletion impaired Akt signaling and mitosis-promoting factor colocalization in Nrf2(+/+) cells. Collectively, our findings uncover novel functions for Nrf2 in regulating oxidative stress-induced cell-cycle arrest, especially G(2)/M-checkpoint arrest, and proliferation, and GSH-regulated redox signaling and Akt are required for this process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据