4.8 Article

Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7

期刊

ONCOGENE
卷 27, 期 47, 页码 6164-6174

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2008.216

关键词

ubiquitin ligase; Fbxw7; Notch; mouse embryonic fibroblast; tumor suppressor; p53

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  2. 21st Century Center of Excellence Program

向作者/读者索取更多资源

The F-box protein Fbxw7 mediates the ubiquitylation and consequent degradation of proteins that regulate cell cycle progression, including cyclin E, c-Myc, c-Jun and Notch. Moreover, certain human cancer cell lines harbor loss-of-function mutations in FBXW7 that result in excessive accumulation of Fbxw7 substrates, implicating Fbxw7 in tumor suppression. To elucidate the physiological function of Fbxw7, we conditionally ablated Fbxw7 in mouse embryonic fibroblasts (MEFs). Unexpectedly, loss of Fbxw7 induced cell cycle arrest and apoptosis that were accompanied by abnormal accumulation of the intracellular domain of Notch1 (NICD1). Forced expression of NICD1 in wild-type MEFs recapitulated the phenotype of the Fbxw7-deficient (Fbxw7D/D) MEFs. Conversely, deletion of Rbpj normalized the phenotype of Fbxw7(Delta/Delta) MEFs, indicating that this phenotype is dependent on the Notch1 RBP-J signaling pathway. Deletion of the p53 gene prevented cell cycle arrest but not the induction of apoptosis in Fbxw7(Delta/Delta) cells. These observations suggest that Fbxw7 does not function as an oncosuppressor in MEFs. Instead, it promotes cell cycle progression and cell survival through degradation of Notch1, with loss of Fbxw7 resulting in NICD1 accumulation, cell cycle arrest and apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据