4.5 Article

Nitrogen limitation and microbial diversity at the treeline

期刊

OIKOS
卷 123, 期 6, 页码 729-740

出版社

WILEY
DOI: 10.1111/j.1600-0706.2013.00860.x

关键词

-

类别

资金

  1. CNRS

向作者/读者索取更多资源

Tree growth limitation at treeline has mainly been studied in terms of carbon limitation while effects and mechanisms of potential nitrogen (N) limitation are barely known, especially in the southern hemisphere. We investigated how soil abiotic properties and microbial community structure and composition change from lower to upper sites within three vegetation belts (Nothofagus betuloides and N. pumilio forests, and alpine vegetation) across an elevation gradient (from 0 to 650 m a.s.l.) in Cordillera Darwin, southern Patagonia. Increasing elevation was associated with a decrease in soil N-NH4+ availability within the N. pumilio and the alpine vegetation belt. Within the alpine vegetation belt, a concurrent increase in the soil C:N ratio was associated with a shift from bacterial-dominated in lower alpine sites to fungal-dominated microbial communities in upper alpine sites. Lower forested belts (N. betuloides, N. pumilio) exhibited more complex patterns both in terms of soil properties and microbial communities. Overall, our results concur with recent findings from high-latitude and altitude ecosystems showing decreased nutrient availability with elevation, leading to fungal-dominated microbial communities. We suggest that growth limitation at treeline may result, in addition to proximal climatic parameters, from a competition between trees and soil microbial communities for limited soil inorganic N. At higher elevation, soil microbial communities could have comparably greater capacities to uptake soil N than trees, and the shift towards a fungal-dominated community would favour N immobilization over N mineralization. Though evidences of altered nutrient dynamics in tree and alpine plant tissue with increasing altitude remain needed, we contend that the measured residual low amount of inorganic N available for trees in the soil could participate to the establishment limitation. Finally, our results suggest that responses of soil microbial communities to elevation could be influenced by functional properties of forest communities for instance through variations in litter quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据