4.5 Article

Body sizes, cumulative and allometric degree distributions across natural food webs

期刊

OIKOS
卷 120, 期 4, 页码 503-509

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1600-0706.2010.18862.x

关键词

-

类别

资金

  1. German Research Foundation [BR 2315/4-1, BR 2315/9-1]
  2. European Science Foundation Research Network SIZEMIC

向作者/读者索取更多资源

The distributions of body masses and degrees (i.e. the number of trophic links) across species are key determinants of food-web structure and dynamics. In particular, allometric degree distributions combining both aspects in the relationship between degrees and body masses are of critical importance for the stability of these complex ecological networks. They describe decreases in vulnerability (i.e. the number of predators) and increases in generality (i.e. the number of prey) with increasing species 'body masses. We used an entirely new global body-mass database containing 94 food webs from four different ecosystem types (17 terrestrial, 7 marine, 54 lake, 16 stream ecosystems) to analyze (1) body mass distributions, (2) cumulative degree distributions (vulnerability, generality, linkedness), and (3) allometric degree distributions (e.g. generality - body mass relationships) for significant differences among ecosystem types. Our results demonstrate some general patterns across ecosystems: (1) the body masses are often roughly log-normally (terrestrial and stream ecosystems) or multi-modally (lake and marine ecosystems) distributed, and (2) most networks exhibit exponential cumulative degree distributions except stream networks that most often possess uniform degree distributions. Additionally, with increasing species body masses we found signifi cant decreases in vulnerability in 70% of the food webs and signifi cant increases in generality in 80% of the food webs. Surprisingly, the slopes of these allometric degree distributions were roughly three times steeper in streams than in the other ecosystem types, which implies that streams exhibit a more pronounced body mass structure. Overall, our analyses documented some striking generalities in the body-mass (allometric degree distributions of generality and vulnerability) and degree structure (exponential degree distributions) across ecosystem types as well as surprising exceptions (uniform degree distributions in stream ecosystems). This suggests general constraints of body masses on the link structure of natural food webs irrespective of ecosystem characteristics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据