4.5 Article

Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency

期刊

OECOLOGIA
卷 169, 期 4, 页码 1117-1125

出版社

SPRINGER
DOI: 10.1007/s00442-012-2255-6

关键词

Predator-prey interactions; Functional response model; Temperature window; Interaction strength; Metabolic theory of ecology

类别

资金

  1. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Temperature is one of the most important environmental parameters influencing all the biological processes and functions of poikilothermic organisms. Although extensive research has been carried out to evaluate the effects of temperature on animal life histories and to determine the upper and lower temperature thresholds as well as the optimal temperatures for survival, development, and reproduction, few studies have investigated links between thermal window, metabolism, and trophic interactions such as predation. We developed models and conducted laboratory experiments to investigate how temperature influences predator-prey interaction strengths (i.e., functional response) using a ladybeetle larva feeding on aphid prey. As predicted by the metabolic theory of ecology, we found that handling time exponentially decreases with warming, but-in contrast with this theory-search rate follows a hump-shaped relationship with temperature. An examination of the model reveals that temperature thresholds for predation depend mainly on search rate, suggesting that predation rate is primarily determined by searching activities and secondly by prey handling. In contrast with prior studies, our model shows that per capita short-term predator-prey interaction strengths and predator energetic efficiency (per capita feeding rate relative to metabolism) generally increase with temperature, reach an optimum, and then decrease at higher temperatures. We conclude that integrating the concept of thermal windows in short- and long-term ecological studies would lead to a better understanding of predator-prey population dynamics at thermal limits and allow better predictions of global warming effects on natural ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据