4.5 Article

Mean residence time of leaf number, area, mass, and nitrogen in canopy photosynthesis

期刊

OECOLOGIA
卷 169, 期 4, 页码 927-937

出版社

SPRINGER
DOI: 10.1007/s00442-012-2266-3

关键词

Leaf duration; Efficiency; Longevity; Productivity; Nitrogen use efficiency

类别

资金

  1. Japan Society for the Promotion of Science [20370015, 21114009]
  2. Grants-in-Aid for Scientific Research [20370015, 21114009] Funding Source: KAKEN

向作者/读者索取更多资源

Mean residence time (MRT) of plant nitrogen (N), which is an indicator of the expected length of time N newly taken up is retained before being lost, is an important component in plant nitrogen use. Here we extend the concept MRT to cover such variables as leaf number, leaf area, leaf dry mass, and nitrogen in the canopy. MRT was calculated from leaf duration (i.e., time integral of standing amount) divided by the total production of leaf variables. We determined MRT in a Xanthium canadense stand established with high or low N availability. The MRT of leaf number may imply longevity of leaves in the canopy. We found that the MRT of leaf area and dry mass were shorter than that of leaf number, while the MRT of leaf N was longer. The relatively longer MRT of leaf N was due to N resorption before leaf shedding. The MRT of all variables was longer at low N availability. Leaf productivity is the rate of canopy photosynthesis per unit amount of leaf variables, and multiplication of leaf productivity by MRT gives the leaf photosynthetic efficiency (canopy photosynthesis per unit production of leaf variables). The photosynthetic efficiency of leaf number implies the lifetime carbon gain of a leaf in the canopy. The analysis of plant-level N use efficiency by evaluating the N productivity and MRT is a well-established approach. Extension of these concepts to leaf number, area, mass, and N in the canopy will clarify the underlying logic in the study of leaf life span, leaf area development, and dry mass and N use in canopy photosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据