4.5 Article

A trait-based approach to species' roles in stream ecosystems: climate change, community structure, and material cycling

期刊

OECOLOGIA
卷 158, 期 2, 页码 307-317

出版社

SPRINGER
DOI: 10.1007/s00442-008-1132-9

关键词

Unionidae; Ecosystem service; Community; Nutrient excretion; Biodiversity

类别

资金

  1. National Science Foundation [DEB0211010, DEB-0608247]
  2. Oklahoma Department of Wildlife Conservation [SWGT-10]
  3. Department of Zoology, University of Oklahoma
  4. Oklahoma Biological Survey

向作者/读者索取更多资源

The sustained decline in habitat quality and community integrity highlights the importance of understanding how communities and environmental variation interactively contribute to ecosystem services. We performed a laboratory experiment manipulating effects of acclimation temperature (5, 15, 25, and 35 degrees C) on resource acquisition, assimilation and subsequent ecosystem services provided by eight freshwater mussel species. Our results suggest that although freshwater mussels are broadly categorized as filter feeders, there are distinct nested functional guilds (thermally tolerant and sensitive) associated with their thermal performance. At 35 degrees C, thermally tolerant species have increased resource assimilation and higher rates of contributed ecosystem services (nutrient excretion, benthic-pelagic coupling). Conversely, thermally sensitive species have decreased assimilation rates and display an array of functional responses including increased/decreased benthic-pelagic coupling and nutrient excretion. Although thermally sensitive species may be in poorer physiological condition at warmer temperatures, their physiological responses can have positive effects on ecosystem services. We extrapolated these results to real mussel beds varying in species composition to address how shifts in community composition coupled with climate change may shift their contributed ecological services. Comparative field data indicate that two co-existing, abundant species with opposing thermal performance (Actinonaias ligamentina, Amblema plicata) differentially dominate community biomass. Additionally, communities varying in the relative proportion of these species differentially influence the magnitude (benthic-pelagic coupling) and quality (N:P excretion) of ecosystem services. As species are increasingly threatened by climate change, greater emphasis should be placed on understanding the contribution of physiological stress to the integrity and functioning of ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据