4.7 Article

Adaptive sliding mode control based on local recurrent neural networks for underwater robot

期刊

OCEAN ENGINEERING
卷 45, 期 -, 页码 56-62

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2012.02.004

关键词

Underwater robot; Trajectory tracking; Adaptive control; Neural networks; Sliding mode control

向作者/读者索取更多资源

The trajectory tracking control problem of underwater robot is addressed in this paper. In general, an accurate thrust modeling is very difficult to establish for underwater robot in practice. Hence, the control voltage of thruster is designed directly as the input of system by the controller in this article. First, Taylor's polynomial is used to transform the form of trajectory tracking error system of underwater robot to the form of affine nonlinear systems, whose input is the control voltage of thruster. Then, according to the principle of sliding mode control, and using the local recurrent neural network to estimate the unknown item of affine system online, an adaptive sliding mode control is proposed. Aiming at the chattering problem which is caused by sliding mode control item, we propose a switch gain adjust method based on exponential function. It was proved that the trajectory tracking error of the underwater robot control system is uniformly ultimately bounded through Lyapunov theory. The feasibility and effectiveness of the proposed approach is demonstrated with trajectory tracking experiments of the experimental prototype of underwater robot. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据