4.4 Article

Lipid mobilization following Roux-en-Y gastric bypass examined by magnetic resonance imaging and spectroscopy

期刊

OBESITY SURGERY
卷 18, 期 10, 页码 1297-1304

出版社

SPRINGER
DOI: 10.1007/s11695-008-9484-0

关键词

gastric bypass; hepatic lipids; free fatty acids; insulin; adiponectin; leptin

类别

资金

  1. Uppsala University
  2. Novo Nordisk Fund
  3. Ernfors Fund

向作者/读者索取更多资源

Background Recent developments of magnetic resonance imaging (MRI) and spectroscopy have made it possible to quantify lipid deposited in different tissues. To what extent an improvement of glucose tolerance shortly after Roux-en-Y gastric bypass surgery (RYGBP) is reflected in lipid levels in liver and skeletal muscle, markers of insulin resistance, has not been clarified. Methods Whole-body MRI and MR spectroscopy (MRS) of liver and muscle and measurements of biochemical markers of glucose and lipid metabolism were performed at baseline and 1, 6, and 12 months following surgery in seven morbidly obese women. Volumes of adipose tissue depots and liver and muscle lipids were assessed from the MRI/MRS data. Results At 1 month postoperatively, body mass index and visceral and subcutaneous adipose tissues were reduced by 9%, 26%, and 10%, respectively, whereas no reductions in intrahepatocellular or skeletal intramyocellular lipid concentrations were found. Free fatty acid and beta-hydroxybutyrate levels were elevated two- and sixfold, respectively; glucose and insulin levels were lowered, indicating increased insulin sensitivity. Further weight loss up to 1 year was associated with reductions in all investigated lipid depots investigated, with the exception of the intramyocellular compartment. Conclusion RYGBP causes rapid lipid mobilization from visceral and subcutaneous adipose depots and enhanced free fatty acid flux to the liver. An exceptional disconnection between liver fat and insulin sensitivity occurs in the early dynamic phase after surgery. However, in the late phase, the energy restriction imposed by the surgical procedure also reduces the liver lipids, but not the intramyocellular lipids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据