4.7 Article

Endothelin-1 Suppresses Long-Chain Fatty Acid Uptake and Glucose Uptake Via Distinct Mechanisms in 3T3-L1 Adipocytes

期刊

OBESITY
卷 19, 期 1, 页码 6-12

出版社

WILEY
DOI: 10.1038/oby.2010.124

关键词

-

资金

  1. National Science Council of Taiwan [NSC 96-2314-B-075-003, NSC 97-2314-B-075-013-MY3]
  2. Taipei Veterans General Hospital [VGH V97C1-026]
  3. Veterans General Hospitals University System of Taiwan [VGHUST96-G1-2]

向作者/读者索取更多资源

Endothelin-1 (ET-1) has been demonstrated to induce insulin resistance (IR) and lipolysis, raising the possibility that ET-1 may also contribute to the elevated fatty acid levels in IR-associated comorbidities. We attempted to evaluate whether ET-1 also affects the long-chain fatty acid (LCFA) utilization in 3T3-L1 adipocytes. The effects of chronic ET-1 exposure on basal and insulin-stimulated LCFA uptake, and LCFA uptake kinetics were examined in 3T3-L1 adipocytes. Chronic exposure to ET-1 induced IR and suppressed basal and insulin-stimulated LCFA uptake. Given that insulin acutely stimulates LCFA uptake, there was dramatically similar trend of dose-response curves for ET-1-suppressed LCFA uptake, and also similar corresponding IC50 values, between basal and insulin-stimulated states, reflecting that ET-1 predominantly suppresses basal LCFA uptake. Results of LCFA kinetics, western blots, and CD36 inhibition using sulfosuccinimidyl oleate (SSO) revealed that suppression of LCFA uptake by ET-1 is associated with downregulation of CD36. ET type A receptor (ETAR) antagonist BQ-610 reversed the IR induction and the ET-1-suppressed LCFA uptake. Exogenous replenishment of phosphatidylinositol (PI) 4, 5-bisphosphate (PIP2) prevented IR induction, but not the suppression of LCFA uptake by ET-1. Pharmacological inhibition of the activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) completely blocked the ET-1-suppressed LCFA uptake. Serving as an inducer of IR, ET-1 also chronically suppresses LCFA uptake via PIP2-independent and ERK-dependent pathway. The interplay between impaired glucose disposal and diminished LCFA utilization, induced by ET-1, could worsen the dysregulation of adipose metabolism and energy homeostasis in insulin-resistant states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据