4.7 Article

High Energy Digestion Efficiency and Altered Lipid Metabolism Contribute to Obesity in BFMI Mice

期刊

OBESITY
卷 17, 期 11, 页码 1988-1993

出版社

WILEY
DOI: 10.1038/oby.2009.124

关键词

-

资金

  1. German National Genome Research Network [01GS0486, 01GS0483, 01GS0822]
  2. German Research Foundation [GK1209]

向作者/读者索取更多资源

To constitute a valuable resource to identify individual genes involved in the development of obesity, a novel mouse model, the Berlin Fat Mouse Inbred line 860 (BFMI860), was established. In order to characterize energy intake and energy expenditure in obese BFMI860 mice, we performed two independent sets of experiments in male BFMI860 and B6 control mice (10 per line). In experiment 1, we analyzed body fat content noninvasively by dual-energy X-ray absorptiometry and measured resting metabolic rate at thermoneutrality (RMRt) and respiratory quotient (RQ) in week 6, 10, and 18. In a second experiment, energy digested (energy intake minus fecal energy loss) was determined by bomb calorimetry from week 6 through week 12. BFMI860 mice were heavier and had higher fat mass (final body fat content was 24.7% compared with 14.6% in B6). They also showed fatty liver syndrome. High body fat accumulation in BFMI860 mice was restricted to weeks 6-10 and was accompanied by hyperphagia, higher energy digestion, higher RQs, and abnormally high blood triglyceride levels. Lean mass-adjusted RMRt was not altered between lines. These results indicate that in BFMI860 mice, the excessive accumulation of body fat is associated with altered lipid metabolism, high energy intake, and energy digestion. Assuming that BFMI860 mice and their obese phenotypes are of polygenic nature, this line is an excellent model for the study of obesity in humans, especially for juvenile obesity and hyperlipidemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据