4.5 Article

A benzimidazole-based conducting polymer and a PMMA-clay nanocomposite containing biosensor platform for glucose sensing

期刊

SYNTHETIC METALS
卷 207, 期 -, 页码 102-109

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.synthmet.2015.06.015

关键词

Conducting polymer; Polymer clay nanocomposite; Laponite; Glucose biosensor; Immobilization platform

向作者/读者索取更多资源

Development of materials composed of polymer-clay nanocomposites (PCN) and conducting polymers attracts great interest and preferred in various applications. Hereby, polymethylmethacrylate (PMMA) layered silicate nanocomposites were prepared by in-situ suspension polymerization by grafting PMMA with laponite using a suitable grafting agent. The properties of the as-synthesized PCN materials are characterized by differential scanning calorimetry (DSC), thermal gravimetry analysis (TGA) and gel permeation chromatography (GPC). A conducting polymer; poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-y1)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-y1)-2-benzyl-1H-benzo[d]imidazole) (poly(BIPE)) and a PMMA-clay nanocomposite with 2-(methacryloyloxy) ethyltrimethylammonium chloride (MTMA) modifier were examined as a platform for biomolecule deposition. Glucose oxidase (GOx, beta-D-glucose: oxygen-1-oxidoreductase, EC 1.1.3.4) was chosen as the model enzyme to prepare a scaffold for glucose sensing. Three different sensing strategies; PCN/GOx, poly(BIPE)/GOx and PCN/poly(BIPE)/GOx were analyzed and their biosensor performances were discussed. Surface morphology of the modified electrodes was characterized by scanning electron microscopy (SEM) technique. Electrochemical responses of the enzyme electrodes were monitored at -0.7 V vs. Ag reference electrode by monitoring oxygen consumption in the presence of glucose. After optimum conditions were determined, kinetic and analytical parameters; K-M(aPP), I-max, LOD and sensitivity were investigated for each sensing platform. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据