4.5 Article

Dynamic assembly of electrically conductive PEDOT:PSS nanofibers in electrospinning process studied by high speed video

期刊

SYNTHETIC METALS
卷 203, 期 -, 页码 107-116

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.synthmet.2015.02.018

关键词

Intrinsic conductive polymer; Electrospinning; Nano fibers; Nonwoven mat; PEDOT:PSS; Conductivity

向作者/读者索取更多资源

Electrospinning process is used to generate micrometer to nanometer sized fibers to form nonwoven mats, which is of great interest to produce functional materials exhibiting very high surface area needed to boost efficiency of devices such as sensors, catalyst carriers and drug delivery. Intrinsic conductive polymer materials, like PEDOT:PSS, offer unique material design pathways for a range of emerging flexible electronics applications, including flexible transparent electrodes, LEDs and photovoltaics. In these applications, conductivity and interfacial area of the intrinsic conductive polymer strongly affect the efficiency of the final assembled device. High conductivity increases the efficiency of the device by reducing the resistance. Large interfacial area provides more location for electron hole generation or recombination. This study provides a simple and easy way to generate highly conductive nonwoven nanomat of commercially available intrinsic conductive polymers. Spinnability and conductivity are achieved by using a very small amount of very high molecular weight PEO that provides stability in electrospinning process without interfering the percolation path of PEDOT:PSS within nanofibers. High speed video observations revealed a dnique spinning pattern of fiber standing at the collecting plate in electrospinning. This was solved by introducing an air stream flowing along the direction deposition. Effect of humidity, viscosity and electrospinning voltage on electrospun fiber diameters was also investigated. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据